

Syllabus Master Erasmus Mundus Bioref University of Bari Aldo Moro

With the support of the Erasmus+ Programme of the European Union

Unit title	Code	Module title	Details	Hours number	ECTS Credits				
	BIOREF B1								
Biotechno- logues for biomass conversion	B1A	Metabolic engineering of microorganisms: Strain engineering and development	The main objective of the course is to introduce to students basic microbial physiology concepts and to fermentation processes in order to understand the basic engineering concepts underlying biocatalytic conversion of raw materials to products including fuels and chemi- cals. Topics: industrial fermentation (media, microbial growth), en- zymology, bioreactor design, enzyme kinetics, fermentation kinetics, batch/fed-batch/continuous bioreactor operations. Gas-liquid mass transfer. Yields and rates in a biotechnological process.						
	B1B	Metabolic engineering of microorganisms: Metabolic flux anal- ysis	The main objective of the course is to introduce students to the basic methods employed to analyze, design and modify metabolic pathways in order to improve a microbial biocatalyst and convert more efficient- ly raw materials to products including fuels and chemicals. To accom- modate the students who do not have the biological background, the course will first deal with the basic concepts of microbiology, bio- chemistry, and molecular biology. Topics: Cell metabolism, pathway design, bioenergetics, regulation of metabolism, metabolic modeling, and genetic engineering tools. Rational and random approaches to metabolic engineering. Analysis of a microbial biocatalyst: genomics, transcriptomics, proteomics, fluxomics, systems biology. Case studies relevant to applications of metabolic engineering in biorefineries will be presented.		8				
	B1C	Enzymatic conversion of biomass for chemi- cals production	The main objective of the course is to introduce the students to the basic concepts of enzyme-mediated biocatalysis applied to biomass conversion to chemicals and fuels. Topics: enzyme classification; enzymatic kinetics; mechanisms of enzymatic reactions; enzyme inhibition; regulation of enzymatic ac- tivity. Particular attention will be given to the industrial application of enzymes for biomass conversion and to the technologies employed to improve an enzymatic activity.						
		BIOREF B2							
Oily biomass Production	B2A	Harvesting treatment and fractionation of acquatic biomass	The objective of the course is the introduction to the production of acquatic biomass and extraction of bio-oil. In particular, will be dis- cussed the characterization of aquatic biomass and its cultivation. Attention will be paid to harvesting techniques and composition of aquatic biomass as chemicals can be extracted from the aquatic bio- mass by using a variety of non-destructive technologies.						
	B2B	Extraction of oil	Technologies for algal oil and chemical extraction. Conventional solvent extraction. Supercritical solvent extraction. Mechanical ex- traction. Biological extraction. Analyses of the processing cost.		9				
	B2C	Comparison of oils from terrestrial drupes and seeds with oil from acquatic biomass	Physico-chemical properties of produced biodiesel form aquatic bio- mass and terrestrial drupes and seeds						
	B2D	Enhannced production of acquatic biomass	Influence of the N: P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition						

	BIOREF B3							
Oily biomass refineries	B3A	Oil chemistry and biotechnologies; con- version into chemicals monomers for poly- mers and fuels	Chemical processes (Catalytic and thermochemical processes) for the conversion of biomass to fuels and chemicals Biotechnologies for the production of chemicals and fuels from oleaginous biomass; use of triacylglycerols, fatty acids, and glycerol. Biocatalysis in biodiesel production. Oleaginous microorganisms (different from microalgae) and their biotechnological potential.		11			
	B3B	Waste treatment Bio- gas production	Anaerobic fermentation: biogas from waste. The aerobic and anaero- bic processes of FVGs (fuel vegetal garden residues).					
	B3C	Economic assessment of acquatic biomass	Technical and nontechnical gaps and barriers, cost of production, use of land, Parameters and values for the economic evaluation of biorefineries					
	BIOREF B4							
Language	B4	English			5			

